About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
ICASSP 2019
Conference paper
Radial Loss for Learning Fine-grained Video Similarity Metric
Abstract
In this paper, we propose the Radial Loss which utilizes category and sub-category labels to learn an order-preserving fine-grained video similarity metric. We propose an end-to-end quadlet-based Convolutional Neural Network (CNN) combined with Long Short-term Memory (LSTM) Unit to model video similarities by learning the pairwise distance relationships between samples in a quadlet generated using the category and sub-category labels. We showcase two novel applications of learning a video similarity metric - (i) fine-grained video retrieval, (ii) fine-grained event detection, along with simultaneous shot boundary detection, and correspondingly show promising results against those of the baselines on two new fine-grained video datasets.