About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
ICML 2022
Conference paper
Quantum-Inspired Algorithms from Randomized Numerical Linear Algebra
Abstract
We create classical (non-quantum) dynamic data structures supporting queries for recommender systems and least-squares regression that are comparable to their quantum analogues. Dequantizing such algorithms has received a flurry of attention in recent years; we obtain sharper bounds for these problems. More significantly, we achieve these improvements by arguing that the previous quantum-inspired algorithms for these problems are doing leverage or ridge-leverage score sampling in disguise; these are powerful and standard techniques in randomized numerical linear algebra. With this recognition, we are able to employ the large body of work in numerical linear algebra to obtain algorithms for these problems that are simpler or faster (or both) than existing approaches. Our experiments demonstrate that the proposed data structures also work well on real-world datasets.