About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
APS March Meeting 2022
Conference paper
Quantum error correction on a superconducting system with heavy hexagon topology
Abstract
Superconducting qubit based systems have made tremendous strides in device performance, from improved coherences to lowered single- and two-qubit gate errors, and high-fidelity mid-circuit measurements and qubit resets. In this talk, I will present recent progress towards fault tolerant quantum error correction on superconducting qubit systems, that leverages the resources from improved device performance. I will focus on experimental demonstrations on a heavy-hexagon topology, an arrangement that reduces lattice connectivity compared to other popular low-degree parity-check codes in order to mitigate cross-talk between fixed-frequency transmon qubits. I will describe some of the encoding, syndrome extraction, and decoding operations that can be tailored to this topology, focusing on d = 2 and 3 codes. The code design, along with the current level of hardware noise, place this system in a very favorable path for the coming years in the quest for scalable, fault-tolerant quantum error correction. Our results and preliminary simulations highlight not only the versatility and flexibility of the underlying heavy-hexagon topology, but also the importance of tailoring a decoder when implementing these protocols. *We acknowledge support from IARPA under Contract No. W911NF-16-1-0114.