About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Abstract
Green’s function methods lead to ab initio, systematically improvable simulations of molecules and materials while providing access to multiple experimentally observable properties such as the density of states and the spectral function. The calculation of the exact one-particle Green’s function remains a significant challenge for classical computers and was attempted only on very small systems. Here, we present a hybrid quantum-classical algorithm to calculate the imaginary-time one-particle Green’s function. The proposed algorithm combines the variational quantum eigensolver and the quantum subspace expansion methods to calculate Green’s function in Lehmann’s representation. We demonstrate the validity of this algorithm by simulating H2 and H4 on quantum simulators and on IBM’s quantum devices.