About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Paper
Quanti.us: a tool for rapid, flexible, crowd-based annotation of images
Abstract
We describe Quanti.us, a crowd-based image-annotation platform that provides an accurate alternative to computational algorithms for difficult image-analysis problems. We used Quanti.us for a variety of medium-throughput image-analysis tasks and achieved 10–50× savings in analysis time compared with that required for the same task by a single expert annotator. We show equivalent deep learning performance for Quanti.us-derived and expert-derived annotations, which should allow scalable integration with tailored machine learning algorithms.
Related
Conference paper
Establishing the baseline for using plankton as biosensor
Conference paper