About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
INFORMS 2021
Talk
Privacy preserving explanations for hierarchical time series forecasts
Abstract
Data privacy and explainability are two important requirements for any mature AI enabled system. Local explainability for a prediction or forecast amounts to assigning credit or blame to different input features of a model responsible for that prediction. Aggregation of these predictions and explanations to higher levels of hierarchy is often met with the challenge of privacy loss as it reveals characteristics of individual data points to a wider audience. Hence, an optimal tradeoff between privacy and explainability is explored in the context of hierarchical time series forecasting.