About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
ICASSP 2024
Conference paper
SAR2NDVI: Pre-training for SAR-to-NDVI Image Translation
Abstract
Geospatial machine learning is of growing importance in various global remote-sensing applications, particularly in the realm of vegetation monitoring. However, acquiring accurate ground truth data for geospatial tasks remains a significant challenge, often entailing considerable time and effort. Foundation models, emphasizing pre-training on large-scale data and fine-tuning, show promise but face limitations when applied to geospatial data due to domain differences. Our paper introduces a novel image translation method, combining geospatial-specific pre-training with training and test-time data augmentation. In a case study involving the translation of normalized difference vegetation index (NDVI) values from synthetic aperture radar (SAR) images of cabbage farms, our approach outperformed competitors by 31% in a public competition. It also exceeded the average of the top five teams by 44%. We publish both our image translation method with baseline methods and the geospatial-specific dataset at https://github.com/IBM/SAR2NDVI.