About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
ICML 2024
Conference paper
Practical Hamiltonian Monte Carlo on Riemannian Manifolds via Relativity Theory
Abstract
Hamiltonian Monte Carlo (HMC) samples from an unnormalized density by numerically integrating Hamiltonian dynamics. Girolami & Calderhead (2011) extend HMC to Riemannian manifolds, but the resulting method faces integration instability issues for practical usage. While previous works have tackled this challenge by using more robust metric tensors than Fisher's information metric, our work focuses on designing numerically stable Hamiltonian dynamics. To do so, we start with the idea from Lu et al. (2017), which designs momentum distributions to upper-bound the particle speed. Then, we generalize this Lu et al. (2017) method to Riemannian manifolds. In our generalization, the upper bounds of velocity norm become position-dependent, which intrinsically limits step sizes used in high curvature regions and, therefore, significantly reduces numerical errors. We also derive a more tractable algorithm to sample from relativistic momentum distributions without relying on the mean-field assumption.