About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
SPIE DCS 2020
Conference paper
Policy-based ensembles for multi domain operations
Abstract
In multi-domain operations, different domains get different modalities of input signals, and as a result end up training different models for the same decision-making task. The input modalities could be overlapping with each other, which leads to the situation that models created in one domain may be reusable partially for tasks being conducted in other domains. In order to share the knowledge embedded in different models trained independently in each individual domain, we propose the concept of hybrid policy-based ensembles, in which the heterogeneous models from different domains are combined into an ensemble whose operations are controlled by policies specifying which subset of the models ought to be used for an operation. We show how these policies can expressed based on properties of training datasets, and discuss the performance of these hybrid policy-based ensembles on a dataset used for training network intrusion detection models.