About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Paper
Plasmon-Plasmon Hybridization and Bandwidth Enhancement in Nanostructured Graphene
Abstract
Graphene plasmonic structures with long-range layering periodicity are presented. Resonance energy scaling with the number of graphene layers involved in plasmonic excitation allows these structures to support multiple plasmonic modes that couple and hybridize due to their physical proximity. Hybridized states exhibit bandwidth enhancements of 100-200% compared to unhybridized modes, and resonance energies deviate from what is usually observed in coupled plasmonic systems. Origins of this behavior are discussed, and experimental observations are computationally modeled. This work is a precursor and template for the study of plasmonic hybridization in other two-dimensional material systems with layering periodicity. (Graph Presented).