William G. Van der Sluys, Alfred P. Sattelberger, et al.
Polyhedron
Defects introduced by reactive-ion etching (RIE) and plasma etching (PE) using deuterium have been studied in boron-doped silicon with the photoluminescence (PL) technique. We have observed a set of broad luminescence bands in the below-bandgap range between 1.05 and 0.8 eV. These bands change in intensity as well as in photon energy with annealing. We attribute all these PL bands to electron-hole recombination in heavily damaged regions, where electrons and holes can be localized in potential wells caused by the strain surrounding the microscopic hydrogen defects. © 1989.
William G. Van der Sluys, Alfred P. Sattelberger, et al.
Polyhedron
U. Wieser, U. Kunze, et al.
Physica E: Low-Dimensional Systems and Nanostructures
J. Tersoff
Applied Surface Science
Douglass S. Kalika, David W. Giles, et al.
Journal of Rheology