About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
AAAI 2024
Short paper
Partially Observable Hierarchical Reinforcement Learning with AI Planning
Abstract
Partially observable Markov decision processes (POMDPs) challenge reinforcement learning agents due to incomplete environment states. Even assuming monotonicity in uncertainty, it is difficult for an agent to know how and when to stop exploring the environment for a given task. In this abstract, we discuss how to use hierarchical reinforcement learning (HRL) and AI Planning (AIP) to improve exploration when the agent knows possible valuations of unknown predicates and how to discover them. By encoding the uncertainty in an abstract planning model, the agent can derive a high-level plan which is then used to decompose the overall POMDP into a tree of semi-POMDPs for training. We evaluate our agent’s performance on the MiniGrid domain and show how guided exploration may improve agent performance.