About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Paper
On linear processes with dependent innovations
Abstract
We consider asymptotic behavior of partial sums and sample covariances for linear processes whose innovations are dependent. Central limit theorems and invariance principles are established under fairly mild conditions. Our results go beyond earlier ones by allowing a quite wide class of innovations which includes many important nonlinear time series models. Applications to linear processes with GARCH innovations and other nonlinear time series models are discussed. © 2005 Elsevier B.V. All rights reserved.