About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
SDM 2011
Conference paper
On discovering bucket orders from preference data
Abstract
The problem of ordering a set of entities which contain inherent ties among them arises in many applications. Notion of "bucket order" has emerged as a popular mechanism of ranking in such settings. A bucket order is an ordered partition of the set of entities into "buckets". There is a total order on the buckets, but the entities within a bucket are treated as tied. In this paper, we focus on discovering bucket order from data captured in the form of user preferences. We consider two settings: one in which the discrepancies in the input preferences are "local" (when collected from experts) and the other in which discrepancies could be arbitrary (when collected from a large population). We present a formal model to capture the setting of local discrepancies and consider the following question: "how many experts need to be queried to discover the underlying bucket order on n entities?". We prove an upperbound of O(√logn). In the case of arbitrary discrepancies, we model it as the bucket order problem of discovering a bucket order that best fits the data (captured as pairwise preference statistics). We present a new approach which exploits a connection between the discovery of buckets and the correlation clustering problem. We present empirical evaluation of our algorithms on real and artificially generated datasets. Copyright © SIAM.