nPlug: A smart plug for alleviating peak loads
Abstract
The Indian electricity sector, despite having the world's fifth largest installed capacity, suffers from a 12.9% peaking shortage. This shortage could be alleviated, if a large number of deferrable loads, particularly the high powered ones, could be moved from on-peak to off-peak times. However, conventional DSM strategies may not be suitable for India as the local conditions usually favor only inexpensive solutions with minimal dependence on the pre-existing infrastructure. In this work, we present nPlug, a smart plug that sits between the wall socket and deferrable loads such as water heaters, washing machines, and electric vehicles. nPlugs combine real-time sensing and analytics to infer peak periods as well as supply-demand imbalance and reschedule attached appliances in a decentralized manner to alleviate peaks whenever possible. They do not require any manual intervention by the end consumer nor any enhancements to the appliances or existing infrastructure. Some of nPlug's capabilities are demonstrated using experiments on a combination of synthetic and real data collected from plug-level energy monitors. Our results indicate that nPlug can be an effective and inexpensive technology to address the peaking shortage. © 2012 ACM.