About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Conference paper
Neuromorphic devices and architectures for next-generation cognitive computing
Abstract
Cognitive computing describes systems that learn at scale, reason with purpose, and interact with humans naturally [1]. In this paper, we review our work towards enabling next generation cognitive computing using neuromorphic computational schemes that could potentially outperform present-day CPUs and GPUs. Here we use large arrays of Resistive Non-Volatile Memories (NVM) with device conductance serving as synaptic weight. We focus on training and classification using fully-connected networks based on the backpropagation algorithm, and show that our approach could offer power and speed advantages over conventional Von-Neumann processors. We also propose some circuit approximations that improve network parallelism without significantly degrading classification accuracy. Finally, we explore the requirements for a system implementation of on-chip learning.
Related
Conference paper
Inference of Deep Neural Networks with Analog Memory Devices
Conference paper
Accelerating Deep Neural Networks with Analog Memory Devices
Conference paper