About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
ASONAM 2019
Conference paper
Neural-brane: An inductive approach for attributed network embedding
Abstract
Network embedding methodologies, which learn a distributed vector representation for each vertex in a network, have shown to achieve superior performance in many real-world applications, such as node classification, link prediction, and community detection. However, the existing methods for network embedding are unable to generate representation vectors for unseen vertices; besides, these methods only utilize topological information from the network ignoring a rich set of nodal attributes, which is abundant in all real-life networks. In this paper, we present a novel network embedding approach called Neural-Brane, which overcomes both of the above limitations. For a given network, Neural-Brane extracts latent feature representation of its vertices using a designed neural network model that unifies network topological information and nodal attributes. Additionally, Neural-Brane is an inductive embedding approach, which enables generating embedding vectors for unseen future vertices of the attributed network. We evaluate the quality of vertex embedding produced by Neural-Brane by solving the node classification task on four real-world graph datasets. Experimental results demonstrate the superiority of Neural-Brane over the state-of-the-art existing methods.