About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
AMIA ... Annual Symposium proceedings. AMIA Symposium
Paper
Multimodal Pediatric Lymphoma Detection using PET and MRI
Abstract
Lymphoma is one of the most common types of cancer for children (ages 0 to 19). Due to the reduced radiation exposure, PET/MR systems that allow simultaneous PET and MR imaging have become the standard of care for diagnosing cancers and monitoring tumor response to therapy in the pediatric population. In this work, we developed a multimodal deep learning algorithm for automatic pediatric lymphoma detection using PET and MRI. Through innovative designs such as standardized uptake value (SUV) guided tumor candidate generation, location aware classification model learning and weighted multimodal feature fusion, our algorithm can be effectively trained with limited data and achieved superior tumor detection performance over the state-of-the-art in our experiments.