Marta Melé, Asif Javed, et al.
Molecular Biology and Evolution
In this work, we hypothesized that shifts in the food microbiome can be used as an indicator of unexpected contaminants or environmental changes. To test this hypothesis, we sequenced the total RNA of 31 high protein powder (HPP) samples of poultry meal pet food ingredients. We developed a microbiome analysis pipeline employing a key eukaryotic matrix filtering step that improved microbe detection specificity to >99.96% during in silico validation. The pipeline identified 119 microbial genera per HPP sample on average with 65 genera present in all samples. The most abundant of these were Bacteroides, Clostridium, Lactococcus, Aeromonas, and Citrobacter. We also observed shifts in the microbial community corresponding to ingredient composition differences. When comparing culture-based results for Salmonella with total RNA sequencing, we found that Salmonella growth did not correlate with multiple sequence analyses. We conclude that microbiome sequencing is useful to characterize complex food microbial communities, while additional work is required for predicting specific species’ viability from total RNA sequencing.
Marta Melé, Asif Javed, et al.
Molecular Biology and Evolution
Ella Barkan, Ibrahim Siddiqui, et al.
Computational And Structural Biotechnology Journal
Ruiqiang Lu, Jun Wang, et al.
Briefings in Bioinformatics
Raúl Fernández Díaz, Lam Thanh Hoang, et al.
ICLR 2025