About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
SEMI-THERM 2017
Conference paper
Modeling embedded two-phase liquid cooled high power 3D compatible electronic devices
Abstract
Interlayer cooling utilizing pumped two-phase flow of a chip-to-chip interconnect-compatible dielectric fluid is an enabling technology for future high power 3D (three-dimensional) chip stacks. Development of this approach requires high fidelity and computationally manageable conjugate thermal models. In this paper, a conjugate heat transfer model developed for simulating two-phase flow boiling through chip embedded micron-scale channels is described. This model uses a novel hybrid approach where governing equations for flow-field and convection in the single-phase flow regions (e.g. inlet plenum) as well as that for heat conduction in solids is solved in detail (i.e., full-physics) while in the two-phase flow regions (e.g. micro-channels), a reduced-physics approach is used. Extensive model validation using data from several experiments was performed to quantify the accuracy of this model under different operating conditions.