About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
ISIT 2020
Conference paper
Model Projection: Theory and Applications to Fair Machine Learning
Abstract
We study the problem of finding the element within a convex set of conditional distributions with the smallest f-divergence to a reference distribution. Motivated by applications in machine learning, we refer to this problem as model projection since any probabilistic classification model can be viewed as a conditional distribution. We provide conditions under which the existence and uniqueness of the optimal model can be guaranteed and establish strong duality results. Strong duality, in turn, allows the model projection problem to be reduced to a tractable finite-dimensional optimization. Our application of interest is fair machine learning: the model projection formulation can be directly used to design fair models according to different group fairness metrics. Moreover, this information-theoretic formulation generalizes existing approaches within the fair machine learning literature. We give explicit formulas for the optimal fair model and a systematic procedure for computing it.