About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
JVSTB
Paper
Mid-IR and UV-Vis-NIR Mueller matrix ellipsometry characterization of tunable hyperbolic metamaterials based on self-assembled carbon nanotubes
Abstract
Mueller matrix ellipsometry over the wide spectral range from the mid-IR to UV is applied to characterize the dielectric function tensor for films of densely packed single-walled carbon nanotubes aligned in the surface plane. These films optically act as metamaterials with an in-plane anisotropic, bulk effective medium response. A parameterized oscillator model is developed to describe electronic interband transitions, π - π ∗ plasmon resonances, and free-carrier absorption. Wide ranges of hyperbolic dispersion are observed and exceptional tuneability of the hyperbolic ranges is demonstrated by comparing results for a film of aligned but unordered carbon nanotubes with a film fabricated under optimized conditions to achieve hexagonally close-packed alignment of the nanotubes. The effect of doping on the optical properties and hyperbolic range is discussed.