About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
EACL 2021
Conference paper
Meta-learning for effective multi-task and multilingual modelling
Abstract
Natural language processing (NLP) tasks (e.g. question-answering in English) benefit from knowledge of other tasks (e.g., named entity recognition in English) and knowledge of other languages (e.g., question-answering in Spanish). Such shared representations are typically learned in isolation, either across tasks or across languages. In this work, we propose a meta-learning approach to learn the interactions between both tasks and languages. We also investigate the role of different sampling strategies used during meta-learning. We present experiments on five different tasks and six different languages from the XTREME multilingual benchmark dataset (Hu et al., 2020). Our meta-learned model clearly improves in performance compared to competitive baseline models that also include multitask baselines. We also present zero-shot evaluations on unseen target languages to demonstrate the utility of our proposed model.