About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
CCGRID 2020
Conference paper
MARBLE: A Multi-GPU Aware Job Scheduler for Deep Learning on HPC Systems
Abstract
Deep learning (DL) has become a key tool for solving complex scientific problems. However, managing the multi-dimensional large-scale data associated with DL, especially atop extant multiple graphics processing units (GPUs) in modern supercomputers poses significant challenges. Moreover, the latest high-performance computing (HPC) architectures bring different performance trends in training throughput compared to the existing studies. Existing DL optimizations such as larger batch size and GPU locality-aware scheduling have little effect on improving DL training throughput performance due to fast CPU-to-GPU connections. Additionally, DL training on multiple GPUs scales sublinearly. Thus, simply adding more GPUs to a system is ineffective. To this end, we design MARBLE, a first-of-its-kind job scheduler, which considers the non-linear scalability of GPUs at the intra-node level to schedule an appropriate number of GPUs per node for a job. By sharing the GPU resources on a node with multiple DL jobs, MARBLE avoids low GPU utilization in current multi-GPU DL training on HPC systems. Our comprehensive evaluation in the Summit supercomputer shows that MARBLE is able to improve DL training performance by up to 48.3% compared to the popular Platform Load Sharing Facility (LSF) scheduler. Compared to the state-of-the-art of DL scheduler, Optimus, MARBLE reduces the job completion time by up to 47%.