About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Simul. Model. Pract. Theory
Paper
Managing dynamic enterprise and urgent workloads on clouds using layered queuing and historical performance models
Abstract
The automatic allocation of enterprise workload to resources can be enhanced by being able to make what-if response time predictions whilst different allocations are being considered. We experimentally investigate an historical and a layered queuing performance model and show how they can provide a good level of support for a dynamic-urgent cloud environment. Using this we define, implement and experimentally investigate the effectiveness of a prediction-based cloud workload and resource management algorithm. Based on these experimental analyses we: (i) comparatively evaluate the layered queuing and historical techniques; (ii) evaluate the effectiveness of the management algorithm in different operating scenarios; and (iii) provide guidance on using prediction-based workload and resource management. © 2011 Elsevier B.V. All rights reserved.