About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Paper
Main-memory scan sharing for multi-core CPUs
Abstract
Computer architectures are increasingly based on multi-core CPUs and large memories. Memory bandwidth, which has not kept pace with the increasing number of cores, has become the primary processing bottleneck, replacing disk I/O as the limiting factor. To address this challenge, we provide novel algorithms for increasing the throughput of Business Intelligence (BI) queries, as well as for ensuring fairness and avoiding starvation among a concurrent set of such queries. To maximize throughput, we propose a novel FullSharing scheme that allows all concurrent queries, when performing base-table I/O, to share the cache belonging to a given core. We then generalize this approach to a BatchSharing scheme that avoids thrashing on "agg-tables"-hash tables that are used for aggregation processing-caused by execution of too many queries on a core. This scheme partitions queries into batches such that the working-set of agg-table entries for each batch can fit into a cache; an efficient sampling technique is used to estimate selectivities and working-set sizes for purposes of query partitioning. Finally, we use lottery-scheduling techniques to ensure fairness and impose a hard upper bound on staging time to avoid starvation. On our 8-core testbed, we were able to completely remove the memory I/O bottleneck, increasing throughput by a factor of 2 to 2.5, while also maintaining fairness and avoiding starvation. © 2008 VLDB Endowment.
Related
Conference paper
Wildfire: Concurrent blazing data ingest and analytics
Conference paper