About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
APS March Meeting 2021
Talk
Magnetic sensing and control using single-atom spin resonance in an STM
Abstract
We combine the atomic resolution of a low-temperature scanning tunneling microscope (STM) with the high energy resolution of electron spin resonance (ESR), to employ individual atoms on a surface as local magnetic sensors [1]. The STM tip drives spin resonance by means of the large electric field available in the tunnel junction, and senses the spin by means of magnetoresistance, using a spin-polarized STM tip. Magnetic dipolar coupling between iron atoms placed a few nanometers apart on a thin MgO film yields a precise measure of the magnetic moment the iron atoms [2], which are then used to sense other atoms, such as the bistable magnetic bits formed by individual holmium atoms [3]. ESR of titanium and copper atoms [4, 5] reveals spin-1/2 behavior, in contrast to the high spin and large magnetic anisotropy of iron. Assembled arrays of spin-1/2 atoms show Heisenberg coupling that results in highly entangled magnetic states. ESR reveals hyperfine coupling [6] that allows electrically driven hyperpolarization of the nucleus [5]. Pulsed ESR allows coherent manipulation of atomic spins in order to observe Rabi oscillations and spin echoes [7]. Recent measurements using thicker insulating films suggest a route to longer coherence times. The combination of STM with ESR thus provides a versatile tool for exploring nano-scale quantum magnetism. [1] Baumann et al., Science 350, 417 (2015). [2] Choi et al., Nat. Nanotechnol. 12, 420 (2017). [3] Natterer et al., Nature 543, 226 (2017). [4] Yang et al., Phys. Rev. Lett. 119, 227206 (2017). [5] Yang et al., Nat. Nanotechnol. 13, 1120 (2018). [6] Willke et al., Science 362, 336 (2018). [7] Yang et al., Science 366, 509 (2019). *Office of Naval Research