Ming Ji, Qi He, et al.
Data Mining and Knowledge Discovery
This paper studies the problem of latent periodic topic analysis from timestamped documents. The examples of timestamped documents include news articles, sales records, financial reports, TV programs, and more recently, posts from social media websites such as Flickr, Twitter, and Facebook. Different from detecting periodic patterns in traditional time series database, we discover the topics of coherent semantics and periodic characteristics where a topic is represented by a distribution of words. We propose a model called LPTA (Latent Periodic Topic Analysis) that exploits the periodicity of the terms as well as term co-occurrences. To show the effectiveness of our model, we collect several representative datasets including Seminar, DBLP and Flickr. The results show that our model can discover the latent periodic topics effectively and leverage the information from both text and time well. © 2011 IEEE.
Ming Ji, Qi He, et al.
Data Mining and Knowledge Discovery
Fanhua Shang, Yuanyuan Liu, et al.
ICDM 2011
Yizhou Sun, Charu C. Aggarwal, et al.
VLDB
Xifeng Yan, Feida Zhu, et al.
ICDE 2006