About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
NeurIPS 2022
Conference paper
Logical Credal Networks
Abstract
We introduce Logical Credal Networks (or LCNs for short) - an expressive probabilistic logic that generalizes prior formalisms that combine logic and probability. Given imprecise information represented by probability bounds and conditional probability bounds on logic formulas, an LCN specifies a set of probability distributions over all its interpretations. Our approach allows propositional and first-order logic formulas with few restrictions, e.g., without requiring acyclicity. We also define a generalized Markov condition that allows us to identify implicit independence relations between atomic formulas. We evaluate our method on benchmark problems such as random networks, Mastermind games with uncertainty and credit card fraud detection. Our results show that the LCN outperforms existing approaches; its advantage lies in aggregating multiple sources of imprecise information.