Ziv Bar-Yossef, T.S. Jayram, et al.
Journal of Computer and System Sciences
We study Chebyshev collocation when applied to a system of symmetric hyperbolic equations on a finite domain with general boundary conditions. We show that the use of orthogonal projections in the L2 norm in order to smooth out the higher modes and to implement boundary conditions leads to a stable numerical approximation in the L2 norm; the stability estimate corresponds to the estimate of the continuous problem. For constant coefficient systems the method reduces to an efficient implementation of Legendre-Galerkin. © 1988 Plenum Publishing Corporation.
Ziv Bar-Yossef, T.S. Jayram, et al.
Journal of Computer and System Sciences
John A. Hoffnagle, William D. Hinsberg, et al.
Microlithography 2003
Moutaz Fakhry, Yuri Granik, et al.
SPIE Photomask Technology + EUV Lithography 2011
Michael E. Henderson
International Journal of Bifurcation and Chaos in Applied Sciences and Engineering