About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
FUSION 2018
Conference paper
Learning and Reasoning in Complex Coalition Information Environments: A Critical Analysis
Abstract
In this paper we provide a critical analysis with metrics that will inform guidelines for designing distributed systems for Collective Situational Understanding (CSU). CSU requires both collective insight-i.e., accurate and deep understanding of a situation derived from uncertain and often sparse data and collective foresight-i.e., the ability to predict what will happen in the future. When it comes to complex scenarios, the need for a distributed CSU naturally emerges, as a single monolithic approach not only is unfeasible: It is also undesirable. We therefore propose a principled, critical analysis of AI techniques that can support specific tasks for CSU to derive guidelines for designing distributed systems for CSU.