FPGA-based coprocessor for text string extraction
N.K. Ratha, A.K. Jain, et al.
Workshop CAMP 2000
This paper describes a set of feedforward neural network learning algorithms based on classical quasi-Newton optimization techniques which are demonstrated to be up to two orders of magnitude faster than backward-propagation. Then, through initial scaling of the inverse Hessian approximate, which makes the quasi-Newton algorithms invariant to scaling of the objective function, the learning performance is further improved. Simulations show that initial scaling improves the rate of learning of quasi-Newton-based algorithms by up to 50%. Overall, more than two to three orders of magnitude improvement is achieved compared to backward-propagation. Finally, the best of these learning methods is used in developing a small writer-dependent online handwriting recognizer for digits (0 through 9). The recognizer labels the training data correctly with an accuracy of 96.66%.
N.K. Ratha, A.K. Jain, et al.
Workshop CAMP 2000
Maurice Hanan, Peter K. Wolff, et al.
DAC 1976
David A. Selby
IBM J. Res. Dev
John M. Boyer, Charles F. Wiecha
DocEng 2009