Lateral InAs/Si p-Type Tunnel FETs Integrated on Si - Part 2: Simulation Study of the Impact of Interface Traps
Abstract
This part of the paper presents TCAD simulations of the InAs/Si lateral nanowire (NW) tunnel FET (TFET) with the same geometry as the fabricated device discussed in the first part. In addition to band-to-band tunneling, trap-assisted tunneling (TAT) at the InAs/Si and InAs/oxide interfaces was considered. A very good agreement is found between the simulation results and experimental transfer characteristics of different devices. The simulations confirm that the transfer characteristics in the subthreshold regime of the TFETs are entirely dominated by TAT. Due to the high concentration of generation centers at the InAs/Si interface, the current conduction in the subthreshold regime takes place in two steps: carrier generation by TAT at the InAs/Si interface followed by thermionic emission over the hole barrier. The latter is the limiting process, and hence dominant for the subthreshold swing (SS), preventing a value smaller than 60mV/decade. In addition, traps at the Si/oxide interface reduce the electrostatic coupling between the gate and the channel, which further degrades the SS. Predictive simulations with varying interface trap densities indicate that a subthermal SS would only be achievable for Dit < 5× 1011 cm-2 eV-1 at both InAs/Si and InAs/oxide interfaces. This confirms a recently found minimum requirement of Dit < 1× 1012 cm-2 eV-1 for vertical InAs/Si NW TFETs with larger diameters.