About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Conference paper
Knapsack cover subject to a matroid constraint
Abstract
We consider the Knapsack Covering problem subject to a matroid constraint. In this problem, we are given an universe U of n items where item i has attributes: a cost c(i) and a size s(i). We also have a demand D. We are also given a matroid M = (U, I) on the set U. A feasible solution S to the problem is one such that (i) the cumulative size of the items chosen is at least D, and (ii) the set S is independent in the matroid M (i.e. S ∈ I). The objective is to minimize the total cost of the items selected, ⊃ i∈S c(i). Our main result proves a 2-factor approximation for this problem. The problem described above falls in the realm of mixed packing covering problems. We also consider packing extensions of certain other covering problems and prove that in such cases it is not possible to derive any constant factor approximations.
Related
Conference paper
On optimizing distributed non-negative Tucker decomposition
Conference paper