Publication
ICASSP 2024
Conference paper

Joint Unsupervised and Supervised Training for Automatic Speech Recognition via Bilevel Optimization

Abstract

In this paper, we present a novel bilevel optimization-based training approach to training acoustic models for automatic speech recognition (ASR) tasks that we term bi-level joint unsupervised and supervised training (BL-JUST). BL-JUST employs a lower and upper level optimization with an unsupervised loss and a supervised loss respectively, leveraging recent advances in penalty-based bilevel optimization to solve this challenging ASR problem with affordable complexity and rigorous convergence guarantees. To evaluate BL-JUST, extensive experiments on the LibriSpeech and TED-LIUM v2 datasets have been conducted. BL-JUST achieves superior performance over the commonly used pre-training followed by fine-tuning strategy.

Date

Publication

ICASSP 2024