Publication
Surface Science
Paper

Interaction of inert gases with a nickel (100) surface. I. Adsorption of xenon

View publication

Abstract

The adsorption of Xe on a Ni(100) surface has been studied in UHV between 30 and 100 K using LEED, thermal desorption spectroscopy (TDS), work function (Δφ) measurements, and UV photoemission (UPS). At and below 80 K, Xe adsorbs readily with high initial sticking probability and via precursor state adsorption kinetics to form a partially ordered phase. This phase has a binding energy of ~5.2 kcal/mole as determined by isosteric heat measurements. The heat of adsorption is fairly constant up to medium coverages and then drops continuously as the coverage increases, indicating repulsive mutual interactions. The thermal desorption is first order with a preexponential factor of about 1012 s-1, indicative of completely mobile adsorption. Adsorbed Xe lowers the work function of the Ni surface by 376 mV at monolayer coverage. (This coverage is determined from LEED to be 5.65 × 1014 Xe molecules/cm-2.) For not too high coverages, θ, Δφ(θ) can be described by the Topping model, with the initial dipole moment μ0 = 0.29 D and the polarizability α being 3.5 × 10-24 cm3. In photoemission, the Xe 5p 3 2 and 5p 1 2 orbitals show up as intense peaks at 5.56 and 6.83 eV below Ef which do not shift their position as the coverage varies. Multilayer adsorption (i.e. the filling of the second and third layers) can be seen by TDS. The binding energies of these α states can be estimated to range between 4.5 and 3.5 kcal/mole. The results are compared and contrasted with previous findings of Xe adsorption on other transition metal surfaces and are discussed with respect to the nature of the inert-gas-metal adsorptive bond. © 1982.

Date

Publication

Surface Science

Authors

Topics

Share