About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Paper
Inertial range scalings of dissipation and enstrophy in isotropic turbulence
Abstract
The inertial range scalings of local averages of energy dissipation rate and enstrophy (vorticity squared) are studied using high resolution direct numerical simulation data for homogeneous and isotropic turbulence. The Taylor microscale Reynolds number is 216. It is found that the enstrophy is more intermittent than dissipation, consistent with previous one-dimensional surrogate measurements at high Reynolds numbers. Contrary to some recent expectations, enstrophy and dissipation have different exponents. © 1997 The American Physical Society.