About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
SIGIR 2017
Conference paper
Incomplete follow-up question resolution using retrieval based sequence to sequence learning
Abstract
Intelligent personal assistants (IPAs) and interactive question answering (IQA) systems frequently encounter incomplete follow-up questions. The incomplete follow-up questions only make sense when seen in conjunction with the conversation context: The previous question and answer. Thus, IQA and IPA systems need to utilize the conversation context in order to handle the incomplete follow-up questions and generate an appropriate response. In this work, we present a retrieval based sequence to sequence learning system that can generate the complete (or intended) question for an incomplete follow-up question (given the conversation context). We can train our system using only a small labeled dataset (with only a few thousand conversations), by decomposing the original problem into two simpler and independent problems. The first problem focuses solely on selecting the candidate complete questions from a library of question templates (built offline using the small labeled conversations dataset). In the second problem, we re-rank the selected candidate questions using a neural language model (trained on millions of unlabelled questions independently). Our system can achieve a BLEU score of 42.91, as compared to 29.11 using an existing generation based approach. We further demonstrate the utility of our system as a plug-in module to an existing QA pipeline. Our system when added as a plug-in module, enables Siri to achieve an improvement of 131.57% in answering incomplete follow-up questions.