Optimal Sensor Placement for Atmospheric Inverse Modelling
Xinchao Liu, Kyongmin Yeo, et al.
Big Data 2022
The noisiness and low quality of IT operations management data is a major challenge in using machine learning to assist IT operations management. Our system mitigates this challenge by automatically measuring data quality, and then using the results to select data subsets that generate improved model performance. Based on a set of metrics that quantify the quality of a corpus with both structured and unstructured data, we are proposing a framework to automatically identify "well behaved"subsets in the corpus. By streaming input data to separate models for these subsets, we can achieve better performance when compared with a model trained on the full dataset. We present a motivating example that inspired our approach as well as a deployment case study of our system based on engagements with two clients which demonstrate that the proposed methodology is effective for detecting such subsets to improve model performance.
Xinchao Liu, Kyongmin Yeo, et al.
Big Data 2022
Aditya Malik, Nalini Ratha, et al.
CAI 2024
Leonid Karlinsky, Joseph Shtok, et al.
CVPR 2019
John Wamburu, Girmaw Abebe Tadesse, et al.
Big Data 2022