About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Conference paper
High throughput analysis of plankton morphology and dynamic
Abstract
Changes in morphology and swimming dynamics of plankton by exposure to toxic chemicals are studied using a novel a new paradigm of image acquisition and computer vision system. Single cell ciliate Stentor coeruleus enclosed in a drop of water provide a means to automatically deposit many individual samples on a at surface. Chemicals of interest are automatically added to each drop while the dynamical and morphological changes are captured with an optical microscope. With computer vision techniques, we analyze the motion trajectory of each plankton sample, along with its shape information, quantifying the sub-lethal impact of chemicals on plankton health. The system enables large screening of hundreds of chemicals of environmental interest which may make their way into water habitats.