About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
ICML 2020
Workshop paper
Hierarchically Attentive Graph Pooling with Subgraph Attention
Abstract
Graph neural networks got significant attention for graph representation and classification in machine learning community. Different types of neighborhood aggregation and pooling strategies have been proposed in the literature. In this work, we introduce a higher order hierarchical GNN algorithm (SubGattPool) by employing (i) an attention mechanism which learns the importance and aggregates neighboring subgraphs of a node instead of first-order neighbors, and (ii) a hierarchical pooling strategy which learns the importance of different hierarchies in a GNN. SubGattPool is able to achieve state-of-the-art graph classification performance on multiple real-world datasets.