GLOMA: Embedding global information in local matrix approximation models for collaborative filtering
Abstract
Recommender systems have achieved great success in recent years, and matrix approximation (MA) is one of the most popular techniques for collaborative filtering (CF) based recommendation. However, a major issue is that MA methods perform poorly at detecting strong localized associations among closely related users and items. Recently, some MA-based CF methods adopt clustering methods to discover meaningful user-item subgroups and perform ensemble on different clusterings to improve the recommendation accuracy. However, ensemble learning suffers from lower efficiency due to the increased overall computation overhead. In this paper, we propose GLOMA, a new clustering-based matrix approximation method, which can embed global information in local matrix approximation models to improve recommendation accuracy. In GLOMA, a MA model is first trained on the entire data to capture global information. The global MA model is then utilized to guide the training of cluster-based local MA models, such that the local models can detect strong localized associations shared within clusters and at the same time preserve global associations shared among all users/items. Evaluation results using MovieLens and Netflix datasets demonstrate that, by integrating global information in local models, GLOMA can outperform five state-of-the-art MA-based CF methods in recommendation accuracy while achieving descent efficiency.