Publication
ICLR 2024
Conference paper

Fine-tuning Aligned Language Models Compromises Safety, Even When Users Do Not Intend To!

View publication

Abstract

Optimizing large language models (LLMs) for downstream use cases often involves the customization of pre-trained LLMs through further fine-tuning. Meta's open-source release of Llama models and OpenAI's APIs for fine-tuning GPT-3.5 Turbo on customized datasets accelerate this trend. But, what are the safety costs associated with such customized fine-tuning? While existing safety alignment techniques restrict harmful behaviors of LLMs at inference time, they do not cover safety risks when fine-tuning privileges are extended to end-users. Our red teaming studies find that the safety alignment of LLMs can be compromised by fine-tuning with only a few adversarially designed training examples. For instance, we jailbreak GPT-3.5 Turbo's safety guardrails by fine-tuning it on only 10 such examples at a cost of less than $0.20 via OpenAI's APIs, making the model responsive to nearly any harmful instructions. Disconcertingly, our research also reveals that, even without malicious intent, simply fine-tuning with benign and commonly used datasets can also inadvertently degrade the safety alignment of LLMs, though to a lesser extent. These findings suggest that fine-tuning aligned LLMs introduces new safety risks that current safety infrastructures fall short of addressing --- even if a model's initial safety alignment is impeccable, how can it be maintained after customized fine-tuning? We outline and critically analyze potential mitigations and advocate for further research efforts toward reinforcing safety protocols for the customized fine-tuning of aligned LLMs. (This paper contains red-teaming data and model-generated content that can be offensive in nature.)