Robert Manson Sawko, Malgorzata Zimon
SIAM/ASA JUQ
This note continues work by the Lehmers [3], Gunderson [2], Granville and Monagan [1], and Tanner and Wagstaff [6], producing lower bounds for the prime exponent p in any counterexample to the first case of Fermat’s Last Theorem. We improve the estimate of the number of residues r mod p2such that rP= r mod p2and thereby improve the lower bound on p to 7.568 x 1017. © 1990 American Mathematical Society.
Robert Manson Sawko, Malgorzata Zimon
SIAM/ASA JUQ
Fernando Martinez, Juntao Chen, et al.
AAAI 2025
W.F. Cody, H.M. Gladney, et al.
SPIE Medical Imaging 1994
Kenneth L. Clarkson, K. Georg Hampel, et al.
VTC Spring 2007