Erich P. Stuntebeck, John S. Davis II, et al.
HotMobile 2008
Given a graph G on n nodes the authors say that a graph T on n + k nodes is a k-fault tolerant version of G, if one can embed G in any n node induced subgraph of T. Thus T can sustain k faults and still emulate G without any performance degradation. They show that for a wide range of values of n, k and d, for any graph on n nodes with maximum degree d there is a k-fault tolerant graph with maximum degree O(kd). They provide lower bounds as well: there are graphs G with maximum degree d such that any k-fault tolerant version of them has maximum degree at least Omega (d square root k).
Erich P. Stuntebeck, John S. Davis II, et al.
HotMobile 2008
Pradip Bose
VTS 1998
Raymond Wu, Jie Lu
ITA Conference 2007
Ehud Altman, Kenneth R. Brown, et al.
PRX Quantum