About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
CIKM 2015
Conference paper
Fast distributed correlation discovery over streaming time-series data
Abstract
The dramatic rise of time-series data in a variety of contexts, such as social networks, mobile sensing, data centre monitoring, etc., has fuelled interest in obtaining real-time insights from such data using distributed stream processing systems. One such extremely valuable insight is the discovery of correlations in real-time from large-scale time-series data. A key challenge in discovering correlations is that the number of time-series pairs that have to be analyzed grows quadratically in the number of time-series, giving rise to a quadratic increase in both computation cost and communication cost between the cluster nodes in a distributed environment. To tackle the challenge, we propose a framework called AEGIS. AEGIS exploits well-established statistical properties to dramatically prune the number of time-series pairs that have to be evaluated for detecting interesting correlations. Our extensive experimental evaluations on real and synthetic datasets establish the efficacy of AEGIS over baselines.