About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Nature Communications
Paper
Fast and robust analog in-memory deep neural network training
Abstract
Analog in-memory computing is a promising future technology for efficiently accelerating deep learning networks. While using in-memory computing to accelerate the inference phase has been studied extensively, accelerating the training phase has received less attention, despite its arguably much larger compute demand to accelerate. While some analog in-memory training algorithms have been suggested, they either invoke significant amount of auxiliary digital compute—accumulating the gradient in digital floating point precision, limiting the potential speed-up—or suffer from the need for near perfectly programming reference conductance values to establish an algorithmic zero point. Here, we propose two improved algorithms for in-memory training, that retain the same fast runtime complexity while resolving the requirement of a precise zero point. We further investigate the limits of the algorithms in terms of conductance noise, symmetry, retention, and endurance which narrow down possible device material choices adequate for fast and robust in-memory deep neural network training.