Extendibility study of a PVD Cu seed process with Ar+ Rf-Plasma enhanced coverage for 45nm interconnects
Abstract
We present the results of a systematic benchmarking study, using 45nm-groundrule structures, of a commercially-available ionized PVD Cu technology which employs an in-situ Ar+ radio-frequency (Rf) plasma capability for enhanced coverage, and compare its performance and extendibility against the same seedlayer process operated in conventional low-pressure mode. Studies of single-damascene lines and dual-damascene via structures indicate that the PVD Cu seedlayer with Rf-Plasma enhancement enables a reduction of the PVD Cu seed thickness on the order of 35%, based on studies of Cu voiding, via-yield degradation, and transmission-electron microscopy (TEM). These results illustrate the critical importance of the Rf-plasma resputter capability in extending the PVD Cu process to advanced groundrules at 45nm and beyond. © 2008 Materials Research Society.