About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
APS March Meeting 2020
Talk
Exploiting molecular point group symmetries for quantum simulation
Abstract
Simulating molecules is believed to be one of the early-stage applications for quantum computers. Current state-of-the-art quantum computers are limited in size and coherence, therefore optimizing resources to execute quantum algorithms is crucial. In this work, we develop a formalism to reduce the number of qubits required for simulating molecules using spatial symmetries, by finding qubit representations of irreducible symmetry sectors. We present our results for various molecules and elucidate a formal connection of this work with a previous technique that analyzed generic Z2 Pauli symmetries.