About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
APS March Meeting 2021
Talk
Experimental Evaluation of Active Learning of a Two Qubit Cross-Resonance Hamiltonian
Abstract
An important step in calibration and control is Hamiltonian learning, which involves learning the parameters given a Hamiltonian model and description of noise sources through queries to the quantum system. Standard techniques require 𝑂(𝜖−2) queries to achieve learning error 𝜖 due to the standard quantum limit. To minimize the number of queries required and improve the scaling with 𝜖, we propose a Hamiltonian active learner based on Fisher information (“HAL-FI”). Each input query specifies the initial state, measurement operator and interaction time, and the resulting output is a single shot binary valued measurement. Seeded with data from an initial set of queries, HAL-FI optimizes subsequent queries. Performance of HAL-FI is evaluated on a two-qubit cross-resonance gate on a 20-qubit IBM Quantum device, using Qiskit Pulse to model readout noise, imperfect pulse-shaping and decoherence. HAL-FI realizes a 27% reduction in resource requirements over an uniformly random approach, with an order of magnitude reduction over quantum process tomography. Moreover, by spacing out queries non-uniformly in time, HAL-FI can achieve learning error which scales inversely with the number of queries, meeting the Heisenberg bound.